- 品牌:DuPont 杜邦
- 价格: ¥13.7/千克
- 发布日期: 2024-08-09
- 更新日期: 2024-12-26
品牌 | DuPont 杜邦 |
货号 | |
用途 | Vespel? S 聚酰亚胺系列零件和形状,具有不同的属性集 Vespel? S 系列产品是高度耐用的聚酰亚胺,用于要求具有出色耐热性、低磨损和/或低摩擦、强度和抗冲击性的苛刻应用。 |
牌号 | Vespel ST-2010 |
型号 | Vespel ST-2010 |
品名 | 聚酰亚胺类 |
包装规格 | 板、棒、管、方块、长条、圆盘、环、圆球和定制机加工制件 |
外形尺寸 | 板、棒、管、方块、长条、圆盘、环、圆球和定制机加工制件 |
生产企业 | DuPont 杜邦 |
是否进口 |
特点和应用
Vespel 主要用于航空航天、半导体和运输技术。它结合了耐热性、润滑性、尺寸稳定性、耐化学性和抗蠕变性,可用于恶劣和 的环境条件。
与大多数塑料不同,即使在高温下也不会产生明显的释气,这使得它可用于轻质隔热罩和坩埚支撑。它在真空应用中也表现良好,低至极低的低温。然而,Vespel 往往会吸收少量的水,从而导致放置在真空中的泵时间更长。
尽管在这些特性中,有些聚合物都超过了聚酰亚胺,但它们的结合是 Vespel 的主要优势。
热物理性质
Vespel 通常用作测试热绝缘体的导热性参考材料,因为它具有高再现性和热物理性能的一致性。例如,它可以承受高达 300 °C 的反复加热,而不会改变其热性能和机械性能。已经发布了大量测量的热扩散率、比热容和推导密度的表格,这些表格都是温度的函数。
磁性
Vespel 用于 NMR 波谱的高分辨率探针,因为它的体积磁化率(Vespel SP-1 在 21.8 °C 时为 -9.02 ± 0.25×10?6[5])接近室温下的水(20 °C 时为 -9.03×10?6 [6]) 负值表示两种物质都是抗磁性的.将NMR样品周围材料的体积磁化率与溶剂的体积磁化率相匹配,可以减少磁共振线的磁化率展宽。
制造应用加工
Vespel 可以通过直接成型 (DF) 和等静压成型(基本形状 - 板材、棒材和管材)进行加工。对于原型数量,通常使用基本形状以提高成本效益,因为 DF 零件的工具成本相当高。对于大规模的CNC生产,DF零件通常用于降低每个零件的成本,而牺牲的材料性能不如等静压生产的基本形状。
类型
对于不同的应用,特殊配方被混合/复合。形状由三个标准过程生成:
压缩成型(用于板材和环);
等静压成型(棒材用);和
直接成型(用于大批量生产的小尺寸零件)。
与从压缩成型或等静压形状加工而成的零件相比,直接成型零件的性能特征较低。等静压形状具有各向同性的物理性质,而直接成型和压缩成型的形状表现出各向异性的物理性质。
标准聚酰亚胺化合物的一些例子是:
SP-1原生聚酰亚胺提供从低温到 300 °C (570 °F) 的工作温度、高等离子体电阻以及 UL 等级,可实现最小的导电性和导热性。这是未填充的基质聚酰亚胺树脂。它还提供高物理强度和 伸长率,以及 的电气和热绝缘值。示例:Vespel SP-1。15%石墨(按重量计),SP-21添加到基础树脂中,可提高耐磨性并减少摩擦,适用于滑动轴承、止推垫圈、密封环、滑块和其他磨损应用。这种化合物具有石墨填充等级中 的机械性能,但低于原始等级。示例:Vespel SP-21。40%石墨(按重量计),SP-22增强耐磨性、降低摩擦、提高尺寸稳定性(低热膨胀系数)和抗氧化稳定性。示例:Vespel SP-22。10%聚四氟乙烯和15%石墨(按重量计),SP-211添加到基础树脂中,可在各种操作条件下实现 的摩擦系数。它还具有出色的耐磨性, 可达 149 °C (300 °F)。典型应用包括滑动轴承或直线轴承,以及上面列出的许多磨损和摩擦用途。示例:Vespel SP-211。15%填充钼(二硫化钼固体润滑剂),SP-3在真空和其他无湿环境中,石墨实际上会变得具有磨蚀性,具有耐磨性和耐摩擦性。典型应用包括密封件、滑动轴承、齿轮和外太空中的其他磨损表面、超高真空或干燥气体应用。示例:Vespel SP-3。
材料属性数据
Vespel的材料特性(通过等静压成型和机械加工生产)
财产 单位 测试
条件 SP-1
(未填充) SP-21
(15%石墨) SP-22
(40%石墨) SP-211
(10%聚四氟乙烯,
15%石墨) SP-3
(15%钼
2)
比重 无量 纲 1.43 1.51 1.65 1.55 1.60
热膨胀
系数 10?6/K 211–296 千米 45 34 27 [9]
296–573 千米 54 49 38 54 52
导热 W/mK 在 313 K 0.35 0.87 1.73 0.76 0.47
体积电阻率 Ω·米 在 296 K 1014-10 15 1012-10 13
介电常数 无量 纲 在 100 Hz 时 3.62 13.53
在 10 kHz 时 3.64 13.28
在 1 MHz 时 3.55 13.41
Vespel is the trademark of a range of durable high-performance polyimide-based plastics made by DuPont.[1][2]
Characteristics and applications
[edit]
Vespel is mostly used in aerospace, semiconductor, and transportation technology. It combines heat resistance, lubricity, dimensional stability, chemical resistance, and creep resistance, and can be used in hostile and extreme environmental conditions.
Unlike most plastics,[3] it does not produce significant outgassing even at high temperatures, which makes it useful for lightweight heat shields and crucible support. It also performs well in vacuum applications,[4] down to extremely low cryogenic temperatures. However, Vespel tends to absorb a small amount of water, resulting in longer pump time while placed in a vacuum.
Although there are polymers surpassing polyimide in each of these properties, the combination of them is the main advantage of Vespel.
Thermophysical properties
[edit]
Vespel is commonly used as a thermal conductivity reference material for testing thermal insulators, because of high reproducibility and consistency of its thermophysical properties. For example, it can withstand repeated heating up to 300 °C without altering its thermal and mechanical properties.[citation needed] Extensive tables of measured thermal diffusivity, specific heat capacity, and derived density, all as functions of temperature, have been published.[citation needed]
Magnetic properties
[edit]
Vespel is used in high-resolution probes for NMR spectroscopy because its volume magnetic susceptibility (?9.02 ± 0.25×10?6 for Vespel SP-1 at 21.8 °C[5]) is close to that of water at room temperature (?9.03×10?6 at 20 °C [6]) Negative values indicate that both substances are diamagnetic. Matching volume magnetic susceptibilities of materials surrounding NMR sample to that of the solvent can reduce susceptibility broadening of magnetic resonance lines.
Processing for manufacturing applications
[edit]
Vespel can be processed by direct forming (DF) and isostatic molding (basic shapes – plates, rods and tubes). For prototype quantities, basic shapes are typically used for cost efficiency since tooling is quite expensive for DF parts. For large scale CNC production, DF parts are often used to reduce per part costs, at the expense of material properties which are inferior to those of isostatically produced basic shapes.[7]
Types
[edit]
For different applications, special formulations are blended/compounded. Shapes are produced by three standard processes:
compression molding (for plates and rings);
isostatic molding (for rods); and
direct forming (for small size parts produced in large volumes).
Direct-formed parts have lower performance characteristics than parts that have been machined from compression-molded or isostatic shapes. Isostatic shapes have isotropic physical properties, whereas direct formed and compression molded shapes exhibit anisotropic physical properties.
Some examples of standard polyimide compounds are:
SP-1 virgin polyimideprovides operating temperatures from cryogenic to 300 °C (570 °F), high plasma resistance, as well as a UL rating for minimal electrical and thermal conductivity. This is the unfilled base polyimide resin. It also provides high physical strength and maximal elongation, and the best electrical and thermal insulation values. Example: Vespel SP-1.15% graphite by weight, SP-21added to the base resin for increased wear resistance and reduced friction in applications such as plain bearings, thrust washers, seal rings, slide blocks and other wear applications. This compound has the best mechanical properties of the graphite-filled grades, but lower than the virgin grade. Example: Vespel SP-21.40% graphite by weight, SP-22for enhanced wear resistance, lower friction, improved dimensional stability (low coefficient of thermal expansion), and stability against oxidation. Example: Vespel SP-22.10% PTFE and 15% graphite by weight, SP-211added to the base resin for the lowest coefficient of friction over a wide range of operating conditions. It also has excellent wear resistance up to 149 °C (300 °F). Typical applications include sliding or linear bearings as well as many wear and friction uses listed above. Example: Vespel SP-211.15% moly-filled (molybdenum disulfide solid lubricant), SP-3for wear and friction resistance in vacuum and other moisture-free environments where graphite actually becomes abrasive. Typical applications include seals, plain bearings, gears, and other wear surfaces in outer space, ultra-high vacuum or dry gas applications. Example: Vespel SP-3.
Material properties data
[edit]
Material properties of Vespel[8] (produced by isostatic molding and machining)
Property Units Test
condition SP-1
(unfilled) SP-21
(15% graphite) SP-22
(40% graphite) SP-211
(10% PTFE,
15% graphite) SP-3
(15% MoS
2)
Specific gravity dimensionless 1.43 1.51 1.65 1.55 1.60
Thermal expansion
coefficient 10?6/K 211–296 K 45 34 27 [9]
296–573 K 54 49 38 54 52
Thermal conductivity W/mK at 313 K 0.35 0.87 1.73 0.76 0.47
Volume resistivity Ω·m at 296 K 1014–1015 1012–1013
Dielectric constant dimensionless at 100 Hz 3.62 13.53
at 10 kHz 3.64 13.28
at 1 MHz 3.55 13.116
性能优势
飞机发动机外件
杜邦™ Vespel® 可以帮助解决飞机发动机外部部件的严苛密封、磨损、摩擦、振动和耐热性挑战。
Vespel® 飞机发动机风扇叶片材料
杜邦™ Vespel® 为飞机风扇叶片耐磨条和叶片垫片提供经过验证的强度、耐磨性和低摩擦。
发动机部件
杜邦™ Vespel® 零件在高温下具有持久的性能,摩擦和磨损小,是衬套、垫圈和密封圈的理想选择。
涡轮增压器
杜邦™ Vespel® 部件有助于减少排放,同时具有耐热性和隔热性,是涡轮增压器和 EGR 系统的理想选择。
半导体制造后端
尺寸稳定的杜邦™ Vespel® 部件是晶圆处理和芯片测试的理想选择 - 它们磨损低,不会损坏金属或陶瓷等晶圆。
飞机发动机短舱设计
杜邦™ Vespel® 具有久经考验的剪切强度、抗冲击性和减轻重量,可提高飞机发动机短舱的性能。
Vespel® 发动机机油系统密封件
杜邦™ Kalrez® O 形圈、垫圈和定制密封件可承受喷气燃料、发动机润滑油、液压油、火箭推进剂和氧化剂的侵蚀。
动力运动车辆
杜邦™ Vespel® 离合器组件具有韧性、高摩擦下的低磨损和抗冲击性,使其成为全地形车、摩托车等的理想选择。
飞机发动机短舱设计
杜邦™ Vespel® 具有久经考验的剪切强度、抗冲击性、轻量化和高耐热性,可提高飞机发动机短舱性能。
传动系统组件
高性能 Vespel® 传动系统组件有助于控制摩擦、限制磨损并降低卡死风险
用于涡轮增压器和排放系统的高性能材料
汽车行业面临的 挑战是在不牺牲动力的情况下提高燃油经济性和降低排放,所有这些都会影响涡轮增压器和排放系统的材料。尽管人们都在谈论电力驱动系统,但该行业在未来 15-20 年内仍将依赖内燃机,同时解决这些挑战。
因此,2.5L以下的小型内燃机将大幅增长。这些小排量发动机将有助于提供燃油经济性和排放性能,但可能需要某种类型的性能提升才能提供客户所需的动力输出。这种推动力将来自涡轮增压器等设备。
涡轮增压器和排放系统的材料现在必须承受由以下原因引起的更恶劣的运行环境:
更高的温度(峰值为 170 摄氏度至 230 摄氏度)oo
EGR(废气再循环)酸度较高
压力增加
腐蚀性冷却剂
涡轮增压器和排放系统中的磨损和摩擦
在过去几年中,杜邦已将基础材料科学应用于涡轮增压器和排放系统中运动部件的挑战,这些部件具有独特的磨损和摩擦要求。
虽然磨损有很多种类型,但杜邦将磨损定义为一个物体与另一个物体滑动。磨损是基材在试图抵抗其他物体的运动时抵抗破裂的能力(或无法抵抗)。
通过定义一组影响高温磨损的关键材料特性,杜邦科学家已经能够证明磨损改善了 60-70%。
例如,在旋转表面之间带有润滑剂的盘式系统上的板通常用于传动系统应用,例如止推垫圈和密封环。通过仔细优化材料选择和设计指南,同时了解系统的热需求,我们已经能够证明测量的摩擦减少了 45% 到 55%,这对于旋转传动系统组件来说是一个显着的收益。
为了实现长寿命,部件磨损应该很少或没有磨损。为了实现可预测的响应时间,摩擦应在车辆的整个使用寿命内保持恒定。当应用于具有先进排放控制系统的小型涡轮增压发动机时,暴露条件会推动传统材料的性能极限。
杜邦™Vespel SCP树脂塑料产品系列是杜邦公司对摩擦和磨损研究的成果之一。Vespel SCP材料提供:®®
磨损减少多达 60-70%。
在更高的温度、更高的压力时间和速度限制下具有更长的使用寿命。
接近铝的热膨胀系数。
汽车制造商在评估了暴露于高浓度烟灰和焦炭颗粒的排放阀应用中的 Vespel SCP 材料后,发现 EGR 阀的性能有所提高,这也会导致磨损问题和驱动速度问题,这主要是由于摩擦性能随时间的变化。®
涡轮增压器和排放控制装置
Vespel 已在控制臂端和连杆衬套等应用中成功进行了测试,这些应用位于涡轮增压器外部并暴露在发动机舱环境中。工程师们还在考虑内部轴承部件,如滚珠轴承保持器、轴垫片和密封件。®
随着电子控制装置的使用越来越多,这些组件必须以非常快的驱动速度运行。杜邦已经证明,即使在数百万次循环后,Vespel 零件仍能保持平稳、一致的运行。®
从“艺术到部分”
杜邦在弹性体、树脂和高性能零件方面提供深入的 技术支持。杜邦材料和应用开发团队不断寻找集成弹性体和树脂的新方法,以帮助汽车制造商在不牺牲性能的情况下减轻重量和成本。杜邦科学家不断发明高耐热轻质材料系列,以帮助汽车制造商为涡轮增压器和排放系统选择 的材料。杜邦在本地和 的整个价值链中开展工作,帮助汽车制造商缩短从“艺术到零件”的时间。